Article Search
- Authors: Gibbs et al., (2006) Citation: Gibbs, S.E.J., M. C. Wimberly, M. Madden, J. Masour, M.J. Yabsley and D.E. Stalknecht. (2006). Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002-2004. Vector Borne and Zoonotic Diseases, 6(1): 73-82.
- Authors: Cooper et al., (2010) Citation: Cooper, A. R., Page, A. S., Wheeler, B. W., Hillsdon, M., Griew, P., & Jago, R. (2010). Patterns of GPS measured time outdoors after school and objective physical activity in English children: the PEACH project. International Journal of Behavioral Nutrition and Physical Activity, 7, 1-9.
- Authors: Shen et al., (2010) Citation: Shen, L., Xu, H., & Xiao, K. (2010, October). Application of Ocean Remote Sensing in the Detection of Harmful Algal Blooms in the East China Sea. In 2010 International Conference on Multimedia Technology (pp. 1-4). IEEE.
- Authors: Wheeler et al., (2010) Citation: Wheeler, B. W., Cooper, A. R., Page, A. S., & Jago, R. (2010). Greenspace and children's physical activity: a GPS/GIS analysis of the PEACH project. Preventive medicine, 51(2), 148-152.
- Authors: Kim et al., (2011) Citation: Kim, M., Holt, J. B., & Madden, M. (2011). Comparison of global-and local-scale pansharpening for rapid assessment of humanitarian emergencies. Photogrammetric Engineering & Remote Sensing, 77(1), 51-63.
- Authors: Shen et al., (2011) Citation: Shen, L., Xu, H., Guo, X., & Li, M. (2011). Characteristics of large-scale harmful algal blooms (HABs) in the Yangtze River Estuary and the adjacent East China Sea (ECS) from 2000 to 2010. Journal of Environmental Protection, 2(10), 1285.
- Authors: Wang et al., (2011) Citation: Wang, F., & Xu, Y. (2011). Estimating O–D travel time matrix by Google Maps API: implementation, advantages, and implications. Annals of GIS, 17(4), 199-209.
- Authors: Lachowycz et al., (2012) Citation: Lachowycz, K., Jones, A. P., Page, A. S., Wheeler, B. W., & Cooper, A. R. (2012). What can global positioning systems tell us about the contribution of different types of urban greenspace to children's physical activity?. Health & place, 18(3), 586-594.
- Authors: Shen et al., (2012a) Citation: Shen, L., Xu, H., Guo, X., & Wu, P. (2012). Oceanography of Skeletonema costatum harmful algal blooms in the East China Sea using MODIS and QuickSCAT satellite data. Journal of Applied Remote Sensing, 6(1), 063529-063529.
- Authors: Shen et al., (2012b) Citation: Shen, L., Xu, H., & Guo, X. (2012). Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors, 12(6), 7778-7803.
- Authors: Southward et al., (2012) Citation: Southward, E. F., Page, A. S., Wheeler, B. W., & Cooper, A. R. (2012). Contribution of the school journey to daily physical activity in children aged 11–12 years. American journal of preventive medicine, 43(2), 201-204.
- Authors: Xu et al., (2012) Citation: Xu, B., Madden, M., Stallknecht, D. E., Hodler, T. W., & Parker, K. C. (2012). Spatial‐temporal model of haemorrhagic disease in white‐tailed deer in south‐east USA, 1983 to 2000. Veterinary record, 170(11), 288-288.
- Authors: Shen et al., (2013a) Citation: Shen, L., Kyllo, J. M., & Guo, X. (2013). An integrated model based on a hierarchical indices system for monitoring and evaluating urban sustainability. Sustainability, 5(2), 524-559.
- Authors: Shen et al., (2013b) Citation: Shen, L., He, Y., & Guo, X. (2013). Suitability of the normalized difference vegetation index and the adjusted transformed soil-adjusted vegetation index for spatially characterizing loggerhead shrike habitats in North American mixed prairie. Journal of Applied Remote Sensing, 7(1), 073574-073574.
- Authors: Shen et al., (2013c) Citation: Shen, L., He, Y., & Guo, X. (2013). Suitability of the normalized difference vegetation index and the adjusted transformed soil-adjusted vegetation index for spatially characterizing loggerhead shrike habitats in North American mixed prairie. Journal of Applied Remote Sensing, 7(1), 073574-073574.
- Authors: Shen et al., (2014a) Citation: Shen, L., Li, Z., & Guo, X. (2014). Remote sensing of leaf area index (LAI) and a spatiotemporally parameterized model for mixed grasslands. International Journal of Applied Science and Technology, 4(1), 46-61.
- Authors: Shen et al., (2014b) Citation: Shen, L., & Guo, X. (2014). Spatial quantification and pattern analysis of urban sustainability based on a subjectively weighted indicator model: a case study in the city of Saskatoon, SK, Canada. Applied Geography, 53, 117-127.
- Authors: Shen et al., (2014c) Citation: Shen, Li & Guo, Xulin & Xiao, Kang. (2014). Spatiotemporally characterizing urban temperatures based on remote sensing and GIS analysis: A case study in the city of Saskatoon (SK, Canada). Open Geosciences. 7. 10.1515/geo-2015-0005.
- Authors: Alcock et al., (2015) Citation: Alcock, I., White, M. P., Lovell, R., Higgins, S. L., Osborne, N. J., Husk, K., & Wheeler, B. W. (2015). What accounts for ‘England's green and pleasant land’? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning, 142, 38-46.
- Authors: Maurer et al., (2015) Citation: Maurer, J. J., Martin, G., Hernandez, S., Cheng, Y., Gerner-Smidt, P., Hise, K. B., ... & Lipp, E. K. (2015). Diversity and persistence of Salmonella enterica strains in rural landscapes in the southeastern United States. PloS one, 10(7), e0128937.
- Authors: Wheeler et al., (2015) Citation: Wheeler, B. W., Lovell, R., Higgins, S. L., White, M. P., Alcock, I., Osborne, N. J., ... & Depledge, M. H. (2015). Beyond greenspace: an ecological study of population general health and indicators of natural environment type and quality. International journal of health geographics, 14(1), 1-17.
- Authors: Hernandez et al., (2016) Citation: Hernandez, S. M., Welch, C. N., Peters, V. E., Lipp, E. K., Curry, S., Yabsley, M. J., ... & Maurer, J. J. (2016). Urbanized white ibises (Eudocimus albus) as carriers of Salmonella enterica of significance to public health and wildlife. PLoS One, 11(10), e0164402.
- Authors: Du et al., (2017) Citation: Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry & Urban Greening, 27, 24-31.
- Authors: Xu et al., (2017a) Citation: Xu, Y., Wang, L., Fu, C., & Kosmyna, T. (2017). A fishnet-constrained land use mix index derived from remotely sensed data. Annals of GIS, 23(4), 303-313.
- Authors: Xu et al., (2017b) Citation: Xu, Y., Liu, Y., Chen, T., Shao, W., & Fu, Z. (2017). A Longitudinal Analysis of Environment and Risk of Obesity in the US. Journal of Geoscience and Environment Protection, 5(09), 204.
- Authors: Solís et al., (2018) Citation: Solís, P., McCusker, B., Menkiti, N., Cowan, N., & Blevins, C. (2018). Engaging global youth in participatory spatial data creation for the UN sustainable development goals: The case of open mapping for malaria prevention. Applied Geography, 98, 143-155.
- Authors: Wang et al., (2018a) Citation: Wang, Y., Du, H., Xu, Y., Lu, D., Wang, X., & Guo, Z. (2018). Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Science of the Total Environment, 631, 921-933.
- Authors: Wang et al., (2018b) Citation: Wang, L., Zhu, J., Xu, Y., & Wang, Z. (2018). Urban built-up area boundary extraction and spatial-temporal characteristics based on land surface temperature retrieval. Remote Sensing, 10(3), 473.
- Authors: Xiao et al., (2018a) Citation: Xiao, H., Tong, X., Gao, L., Hu, S., Tan, H., Huang, Z. Y., ... & Tian, H. (2018). Spatial heterogeneity of Haemorrhagic fever with renal syndrome is driven by environmental factors and rodent community composition. PLoS neglected tropical diseases, 12(10), e0006881.
- Authors: Xiao et al., (2018b) Citation: Xiao, H., Tong, X., Huang, R., Gao, L., Hu, S., Li, Y., ... & Tian, H. (2018). Landscape and rodent community composition are associated with risk of Haemorrhagic fever with renal syndrome in two cities in China, 2006–2013. BMC Infectious Diseases, 18, 1-10.
- Authors: Du et al., (2019) Citation: Du, H., Cai, Y., Zhou, F., Jiang, H., Jiang, W., & Xu, Y. (2019). Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecological Indicators, 106, 105501.
- Authors: Yang et al., (2019) Citation: Yang, X., Yao, C., Chen, Q., Ye, T., & Jin, C. (2019). Improved estimates of population exposure in low-elevation coastal zones of China. International Journal of Environmental Research and Public Health, 16(20), 4012.
- Authors: Bian et al., (2020) Citation: Bian, J., Li, A., Lei, G., Zhang, Z., & Nan, X. (2020). Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 63-76.
- Authors: Chen et al., (2020) Citation: Chen, Z., Liu, F., Li, B., Peng, X., Fan, L., & Luo, A. (2020). Prediction of hot spot areas of Haemorrhagic fever with renal syndrome in Hunan Province based on an information quantity model and logistical regression model. PLoS Neglected Tropical Diseases, 14(12), e0008939.
- Authors: Fuentes et al., (2020) Citation: Fuentes, M., Millard, K., & Laurin, E. (2020). Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas. GIScience & Remote Sensing, 57(2), 245-257.
- Authors: Gaither et al., (2020) Citation: Gaither, C. J., Aragón, A., Madden, M., Alford, S., Wynn, A., & Emery, M. (2020). “Black folks do forage”: Examining wild food gathering in Southeast Atlanta Communities. Urban Forestry & Urban Greening, 56, 126860.
- Authors: Guo et al., (2020) Citation: Guo, H., Li, W., Yao, F., Wu, J., Zhou, X., Yue, Y., & Yeh, A. G. (2020). Who are more exposed to PM2. 5 pollution: A mobile phone data approach. Environment International, 143, 105821.
- Authors: He et al., (2020) Citation: He, C., Zhou, L., Yao, Y., Ma, W., & Kinney, P. L. (2020). Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China. Sustainable Cities and Society, 57, 102046.
- Authors: Mertzlufft et al., (2020) Citation: Mertzlufft, C. E., Madden, M., Gottdenker, N. L., Velásquez Runk, J., Saldaña, A., Tanner, S., ... & Yao, X. (2020). Landscape disturbance impacts on Attalea butyracea palm distribution in central Panama. International Journal of Health Geographics, 19, 1-17.
- Authors: Samuelsson et al., (2020) Citation: Samuelsson, K., Chen, T. H. K., Antonsen, S., Brandt, S. A., Sabel, C., & Barthel, S. (2020). Residential environments across Denmark have become both denser and greener over 20 years. Environmental Research Letters, 16(1), 014022.
- Authors: Van den Homberg et al., (2020) Citation: Van Den Homberg, M., Crince, A., Wilbrink, J., Kersbergen, D., Gumbi, G., Tembo, S., & Lemmens, R. (2020). Combining UAV Imagery, Volunteered Geographic Information, and Field Survey Data to Improve Characterization of Rural Water Points in Malawi. ISPRS international journal of geo-information, 9(10), 592.
- Authors: Yu et al., (2020) Citation: Yu, J., Xiao, H., Yang, W., Dellicour, S., Kraemer, M. U., Liu, Y., ... & Tian, H. (2020). The impact of anthropogenic and environmental factors on human rabies cases in China. Transboundary and emerging diseases, 67(6), 2544-2553.
- Authors: Zhao et al., (2020) Citation: Zhao, N., Cao, G., Zhang, W., Samson, E. L., & Chen, Y. (2020). Remote sensing and social sensing for socioeconomic systems: A comparison study between nighttime lights and location-based social media at the 500 m spatial resolution. International Journal of Applied Earth Observation and Geoinformation, 87, 102058.
- Authors: Zhu et al., (2020) Citation: Zhu, L., Guo, Y., Zhang, C., Meng, J., Ju, L., Zhang, Y., & Tang, W. (2020). Assessing community-level livability using combined remote sensing and internet-based big geospatial data. Remote Sensing, 12(24), 4026.
- Authors: Chen et al., (2021a) Citation: Chen, Y., Weng, Q., Tang, L., Liu, Q., Zhang, X., & Bilal, M. (2021). Automatic mapping of urban green spaces using a geospatial neural network. GIScience & Remote Sensing, 58(4), 624-642.
- Authors: Chen et al., (2021b) Citation: Chen, B., Tu, Y., Song, Y., Theobald, D. M., Zhang, T., Ren, Z., ... & Xu, B. (2021). Mapping essential urban land use categories with open big data: Results for five metropolitan areas in the United States of America. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 203-218.
- Authors: Bu et al., (2022) Citation: Bu, F., Mak, H. W., Steptoe, A., Wheeler, B. W., & Fancourt, D. (2022). Urban greenspace and anxiety symptoms during the COVID-19 pandemic: A 20-month follow up of 19,848 participants in England. Health & place, 77, 102897.
- Authors: Shen et al., (2022a) Citation: Shen, L., Sun, M., Song, S., Hu, Q., Wang, N., Ou, G., ... & Liu, K. (2022). The impact of anti‐COVID‐19 nonpharmaceutical interventions on hand, foot, and mouth disease—A spatiotemporal perspective in Xi'an, northwestern China. Journal of Medical Virology, 94(7), 3121-3132.
- Authors: Shen et al., (2022b) Citation: Shen, L., Sun, M., Wei, X., Bai, Y., Hu, Q., Song, S., ... & Liu, K. (2022). Spatiotemporal association of rapid urbanization and water-body distribution on Haemorrhagic fever with renal syndrome: A case study in the city of Xi’an, China. PLOS Neglected Tropical Diseases, 16(1), e0010094.
- Authors: Song et al., (2022) Citation: Song, S., Li, Q., Shen, L., Sun, M., Yang, Z., Wang, N., ... & Shao, Z. (2022). From outbreak to near disappearance: how did non-pharmaceutical interventions against Covid-19 affect the transmission of influenza virus?. Frontiers in public health, 10.
Health Conditions/Application Areas: West Nile Virus
Health Conditions/Application Areas: Children Physical Activity
Health Conditions/Application Areas: Ocean Harmful Algal Blooms
Health Conditions/Application Areas: Children Physical Activity
Health Conditions/Application Areas: Humanitarian Emergencies
Health Conditions/Application Areas: Ocean Harmful Algal Blooms
Health Conditions/Application Areas: Transportation Network
Health Conditions/Application Areas: Children Physical Activity
Health Conditions/Application Areas: Ocean Harmful Algal Blooms
Health Conditions/Application Areas: Ocean Harmful Algal Blooms
Health Conditions/Application Areas: Children Physical Activity
Health Conditions/Application Areas: Haemorrhagic Fever
Health Conditions/Application Areas: Urban Sustainability
Health Conditions/Application Areas: Grassland (Prairie) Ecosystems
Health Conditions/Application Areas: Grassland (Prairie) Ecosystems
Health Conditions/Application Areas: Mixed Grasslands
Health Conditions/Application Areas: Urban Sustainability
Health Conditions/Application Areas: Urban Temperatures
Health Conditions/Application Areas: Rural Mental Health
Health Conditions/Application Areas: Salmonella Serovars and Strains
Health Conditions/Application Areas: Human Health and Wellbeing
Health Conditions/Application Areas: Urban-associated Salmonellae
Health Conditions/Application Areas: Urban Green Spaces
Health Conditions/Application Areas: Land Use Mix Index
Health Conditions/Application Areas: Sociodemographic Environments and Obesity
Health Conditions/Application Areas: Malaria Prevention
Health Conditions/Application Areas: Urban Temperatures
Health Conditions/Application Areas: Urban Expansion
Health Conditions/Application Areas: Haemorrhagic Fever
Health Conditions/Application Areas: Haemorrhagic Fever
Health Conditions/Application Areas: Urban Expansion
Health Conditions/Application Areas: Population Exposure to Natural and Climate Change-related Hazards in C
Health Conditions/Application Areas: Mountain Green Cover Index
Health Conditions/Application Areas: Haemorrhagic Fever
Health Conditions/Application Areas: Air Pollution
Health Conditions/Application Areas: Urban Foraging
Health Conditions/Application Areas: Air Pollution
Health Conditions/Application Areas: Urban Thermal Environment
Health Conditions/Application Areas: Landscape Disturbance and Mature A. Butyracea
Health Conditions/Application Areas: Residential Environments Greenness (Denmark)
Health Conditions/Application Areas: Rural Water
Health Conditions/Application Areas: Human Rabies
Health Conditions/Application Areas: Nighttime Lights
Health Conditions/Application Areas: Community-Level Livability
Health Conditions/Application Areas: Urban Green Spaces
Health Conditions/Application Areas: Urban Land Use
Health Conditions/Application Areas: Anxiety Symptoms during the COVID-19 Pandemic
Health Conditions/Application Areas: Hand, Foot, and Mouth Disease (HFMD) Outbreak and COVID-19
Health Conditions/Application Areas: Rural Water
Health Conditions/Application Areas: COVID-19 and Influenza Virus